National Repository of Grey Literature 10 records found  Search took 0.00 seconds. 
Study of mesenchymal stem cell migration based on principles of chemotaxis
Pošustová, Veronika ; Skopalík, Josef (referee) ; Chmelíková, Larisa (advisor)
The purpose of this Master thesis is to verify migration of mesenchymal stem cells on the principle known as chemotaxis. First part of this study is focused on cell migration in order to explain the whole migration process. Next part describes various chemotaxis methods and selected studies dealing with clinical applications of mesenchymal stem cells in different medical and biomedical fields. The following step describes confocal microscopy, which is used for acquiring images of the cells. The experimental part is focused on cultivation of mesenchymal stem cells in a laboratory, which is necessary for cell vitality. Furthermore, there are designed two main experiments. Firstly there is a 2D experiment with adherent cells for chemotaxis using -Slide Chemotaxis. Secondly Transwell migration test is designed and executed. Finally, the acquired images from confocal microscope are used for image processing, which was done in Matlab R2020a programming environment. The result of this processing is evaluation of cell confluence and migration. In the end, experimental part of this study was optimized according to recommended studies. The results are summarized in the conclusion with proposal for improvements of those methods.
Application of fluorescence staining for the "Scratch Wound Healing Assay" experiment
Zumberg, Inna ; Svoboda, Ondřej (referee) ; Chmelíková, Larisa (advisor)
This bachelor’s thesis studies the cell culture of 3T3 cell line (mouse embryonic fibroblast cells) and cell migration. The Scratch Wound Healing Assay was used for the study of cell migration. The basic principles of experimenting, its advantages and disadvantages, as well as the practical use of this method in scientific research were presented on specific examples. Practical part of the bachelor’s thesis describes the experiment in the cell laboratory including cell culture of 3T3 cell line. The proposed experiment was tested with a sufficient number of repetitions. The statistical processing of microscopic images was performed in the MATLAB programming environment.
The role of anillin in the growth cone of neurons
Tomášová, Štěpánka ; Libusová, Lenka (advisor) ; Vinopal, Stanislav (referee)
During embryonal development, axons of newly differentiated neurons need to properly interconnect and create a functional neuronal network. To achieve this, the cell requires a growth cone. The growth cone is a highly dynamic structure at the end of growing axons that serves both as the navigator and the propeller. Crosstalk between actin and microtubules is vital for proper axonal pathfinding. But the exact mechanism of this cooperation remains unknown. This diploma thesis investigates the possible role of a candidate scaffolding protein called anillin in this process. Anillin has been studied in two human cell lines. SH-SY5Y neuroblastoma cell line was used for overexpression and siRNA knock-down experiments. Anillin overexpression led to perturbed neurite morphology and growth cone dynamics in SH-SY5Y cells, whereas cells with lower anillin expression had fewer neurites. Next, neurons differentiated from human iPSC (induced pluripotent stem cells) expressing endogenous fluorescently tagged anillin were studied. Local dynamic high concentration spots of anillin have been observed at the base of cell protrusions of differentiating neurons. These anillin flares appeared during cell migration, early neurite initiation, and in newly created growth cones. These results suggest that anillin plays a...
The role of ERK1 and ERK2 protein kinases in the MAPK/ERK signaling
Galvánková, Kristína ; Vomastek, Tomáš (advisor) ; Dráber, Peter (referee)
The MAPK/ERK cascade is highly conserved signalling pathway regulating cellular processes which are necessary for cell life, such as proliferation, differentiation, apoptosis or cell migration. All these cellular responses are the result of the processing of extracellular signals through three-tier ERK cascade consisting of protein kinases Raf, MEK and ERK. The signal is transmitted by sequential phosphorylation where RAF phosphorylates MEK and MEK phosphorylates and activates ERK. Protein kinase ERK then phosphorylates and regulates a wide range of substrates at different locations in the cell. This affects the cellular response to the extracellular signal. Regulation of this pathway on every level is very important and is modulated by interaction partners and adaptor proteins. Deregulation of the pathway as well as mutations of individual protein kinases can lead to severe pathological consequences. At the level of ERK, there are two isoforms, ERK1 and ERK2, which are more than 80 % identical at the amino acid level. Their high sequence similarity has triggered the interest of many authors for more detailed examination of both isoforms in respect of their evolutionary conservation and whether they are functionally redundant or whether they have specific functions. The aim of this work is to...
The role of anillin in the growth cone of neurons
Tomášová, Štěpánka ; Libusová, Lenka (advisor) ; Vinopal, Stanislav (referee)
During embryonal development, axons of newly differentiated neurons need to properly interconnect and create a functional neuronal network. To achieve this, the cell requires a growth cone. The growth cone is a highly dynamic structure at the end of growing axons that serves both as the navigator and the propeller. Crosstalk between actin and microtubules is vital for proper axonal pathfinding. But the exact mechanism of this cooperation remains unknown. This diploma thesis investigates the possible role of a candidate scaffolding protein called anillin in this process. Anillin has been studied in two human cell lines. SH-SY5Y neuroblastoma cell line was used for overexpression and siRNA knock-down experiments. Anillin overexpression led to perturbed neurite morphology and growth cone dynamics in SH-SY5Y cells, whereas cells with lower anillin expression had fewer neurites. Next, neurons differentiated from human iPSC (induced pluripotent stem cells) expressing endogenous fluorescently tagged anillin were studied. Local dynamic high concentration spots of anillin have been observed at the base of cell protrusions of differentiating neurons. These anillin flares appeared during cell migration, early neurite initiation, and in newly created growth cones. These results suggest that anillin plays a...
Study of mesenchymal stem cell migration based on principles of chemotaxis
Pošustová, Veronika ; Skopalík, Josef (referee) ; Chmelíková, Larisa (advisor)
The purpose of this Master thesis is to verify migration of mesenchymal stem cells on the principle known as chemotaxis. First part of this study is focused on cell migration in order to explain the whole migration process. Next part describes various chemotaxis methods and selected studies dealing with clinical applications of mesenchymal stem cells in different medical and biomedical fields. The following step describes confocal microscopy, which is used for acquiring images of the cells. The experimental part is focused on cultivation of mesenchymal stem cells in a laboratory, which is necessary for cell vitality. Furthermore, there are designed two main experiments. Firstly there is a 2D experiment with adherent cells for chemotaxis using -Slide Chemotaxis. Secondly Transwell migration test is designed and executed. Finally, the acquired images from confocal microscope are used for image processing, which was done in Matlab R2020a programming environment. The result of this processing is evaluation of cell confluence and migration. In the end, experimental part of this study was optimized according to recommended studies. The results are summarized in the conclusion with proposal for improvements of those methods.
The assembly of perinuclear actin stress fibers and their role in cell movement
Votavová, Barbora ; Vomastek, Tomáš (advisor) ; Cvačková, Zuzana (referee)
Nucleus is the largest cellular organelle in animal cells. Due to its bulky nature and the stiffness of nuclear lamina the nucleus constitutes the substantial problem for migrating cells where nucleus has to move. The actomyosin generated forces and LINC (Linker of Nucleoskeleton and Cytoskeleton) complex, that is composed of SUN and nesprin proteins, play key role in nuclear movement. LINC complex mechanically couples nuclear lamina to the cytoskeleton and allows the forces exerted by the cytoskeleton to move the nucleus. Perinuclear actin fibers, also termed actin cap, mechanically link focal adhesions with nucleus and they may generate forces that position the nucleus in a way that is optimal for cellular movement. However, molecular mechanism of how perinuclear actin fibers and LINC complex orchestrate the nuclear movement and functional significance of this process remain poorly understood. The specific aim was to determine the mechanisms by which perinuclear actin fibers are formed and how are these mechanisms employed to facilitate cell migration. The role of LPA-RhoA signaling axis and LINC complex in the formation of perinuclear actin fibers was also examined. It was confirmed that LPA is essencial stimulus during actin cap formation. On the other hand, FAK kinase was found necessary for...
Application of fluorescence staining for the "Scratch Wound Healing Assay" experiment
Zumberg, Inna ; Svoboda, Ondřej (referee) ; Chmelíková, Larisa (advisor)
This bachelor’s thesis studies the cell culture of 3T3 cell line (mouse embryonic fibroblast cells) and cell migration. The Scratch Wound Healing Assay was used for the study of cell migration. The basic principles of experimenting, its advantages and disadvantages, as well as the practical use of this method in scientific research were presented on specific examples. Practical part of the bachelor’s thesis describes the experiment in the cell laboratory including cell culture of 3T3 cell line. The proposed experiment was tested with a sufficient number of repetitions. The statistical processing of microscopic images was performed in the MATLAB programming environment.
The regulation of the ERK signalling pathway by scaffold protein RACK1
Bráborec, Vojtěch ; Vomastek, Tomáš (advisor) ; Filipp, Dominik (referee)
The ERK signalling cascade comprised of protein kinases Raf, MEK and ERK is an evolutionarily conserved member of MAPK family that is activated in response to wide range of extracellular stimuli. The ERK pathway controls fundamental cellular functions including cell proliferation, differentiation, apoptosis or cell motility. To control such a diverse cellular responses by a single pathway cells have evolved regulatory mechanisms that channel the extracellular signals towards the specific biological response. Crucial to this control are non- enzymatic proteins termed scaffolds that associate with and enhance functional interaction of the components of MAPK pathways and can regulate amplitude, timing, specificity and location of signals. Scaffold protein RACK1 associates with several components of cell migration machinery including integrins, FAK, Src and the ERK pathway core protein kinases. RACK1 regulates distinct steps of cell migration such as establishment of cell polarity and focal adhesion turnover, however, the molecular mechanism by which RACK1 regulates these processes remains largely unknown. The main aim of this study was to investigate the functional role of RACK1 in cell motility, in particular to identify new effector proteins utilized by the ERK pathway and RACK1 in the regulation of...
In-vitro analysis of amoeboid-mesenchymal transition of A375m2 melanoma cells
Kasalová, Lenka ; Rösel, Daniel (advisor) ; Vomastek, Tomáš (referee)
The invasion of cancer cells is an important aspect of cancer progression. Single tumor cells exhibit at least two types of invasion in 3D environment, mesenchymal and amoeboid invasion. Tumor cells can switch between these two modes of movement depending on cellular status and surrounding environment. Amoeboid-mesenchymal transition (AMT) is less explored then mesenchymal-amoeboid transition (MAT). We performed a proteomic analysis of amoeboid-mesenchymal transition of human melanoma cell line A375M2. We have induced amoeboid-mesenchymal transition by treatment with a ROCK inhibitor Y27632 in 3D matrigel matrices and in 2D environment. Induction of the amoeboid-mesenchymal transition has changed a level of expression of 92 proteins and a level of phosphorylation of 15 proteins. Expression of only 17 proteins and phosphorylation of 8 proteins was identically changed in both of these environments. We found that PKCα regulates amoeboid migration and that treatment of cells with a PKCα inhibitor Gö6976 induces amoeboid-mesenchymal transition. Analysis of the proteomics data have further shown that induction of AMT by the ROCK inhibitor Y27632 leads to activation of antiapoptotic signals and activation of signaling pathways involved in regulation of actin cytoskeleton especially regulation of focal...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.